高圧ガス乙種機械の学識試験では、近年、問2で理想気体の状態方程式を用いた試験問題が出題されています。問題文には、理想気体の状態方程式を用いて解答するといった指示はなく、気体の前後の状態しか記載されておりませんが、明らかに理想気体の状態方程式を用いて解答する問題です。一方数年前に遡ると気体と液体の性質として理想気体の状態方程式も含んだ問題が出題されています。どちらにも対応可能なように理想気体の状態方程式だけでなく、気体・液体の性質についても解説していきます。
理想気体の状態方程式は、気体を理想化した際の状態を表す方程式です。
PV=nRT
P:圧力(Pressure)(Pa)、V:体積(Volume)(m3)、n:モル数(mol)、
R:アボガドロ定数 8.314(J⋅K−1⋅mol−1)
この式を用いた問題が出題されない時はないといっても過言ではありません。そのため、必ず、覚えるようにしてください。
理想気体の状態方程式を用いた問題で密度を求める問題が出題されることがあります。
密度ρ(ロー)とは単位体積あたりの質量を言い、理想気体の状態方程式を変形して求めることができます。
『温度一定条件における気体の体積は、圧力に反比例する。』
PV = c
P:圧力(Pressure)(Pa)、V:体積(Volume)(m3)、c:一定
上式を数学的に見るとP = c/Vとなり、反比例しています。
ある物資の圧力、または体積を変化させた際のどうなるのかといった問題が出題されます。
『圧力一定条件における気体の体積は、温度に比例する。』
VT=c
V:体積(Volume)(m3)、T:温度(Temperature)(K)、c:一定
※この際の温度Tはセルシウス温度ではなく、絶対温度で数値を代入してください。
※T(K) = t (°C) + 273 (K)
上式を数学的に見るとT = cVとなり、比例しています。
こちらも条件を変化させた際、温度もしくは体積がどのように変化したのかといった問題が出題されます。
ボイルの法則、シャルルの法則をまとめて
として必ず覚えてください。
ボイルの法則、シャルルの法則はそれぞれ別々で
ボイル・シャルルの法則を用いた問題は、式に当てはめることで解答できる問題が多く、得点源にしやすい分野です。
『混合気体の全圧は、成分気体の分圧の総和に等しい』
そもそも全圧とは、2種類以上の気体が混ざりあっているとき、混合気体の圧力のことを言います。
また、その際の各物質単独での気体が同体積ある場合の各圧力のことを言います。
混合気体の組成と分圧の関係
分圧の比 = 物質量の比が成り立ちます。
Pa:Pb = na:nb
また、上記から「Aの分圧 = 全圧 × Aのモル分率」が導かれます。